Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Reliable and controllable growth of two-dimensional (2D) hexagonal boron nitride (h-BN) is essential for its wide range of applications. Substrate engineering is one of the critical factors that influence the growth of the epitaxial h-BN films. Here, we report the growth of monolayer h-BN on Ni (111) substrates incorporated with oxygen atoms via molecular beam epitaxy. It was found that the increase of incorporated oxygen concentration in the Ni substrate through a pretreatment process prior to the h-BN growth step would have an adverse effect on the morphology and growth rate of 2D h-BN. Under the same growth condition, h-BN monolayer coverage decreases exponentially as the amount of oxygen incorporated into Ni (111) increases. Density functional theory calculations and climbing image nudged elastic band (CI-NEB) method reveal that the substitutional oxygen atoms can increase the diffusion energy barrier of B and N atoms on Ni (111) thereby inhibiting the growth of h-BN films. As-grown large-area h-BN monolayer films and fabricated Al/h-BN/Ni (MIM) nanodevices were comprehensively characterized to evaluate the structural, optical and electrical properties of high-quality monolayers. Direct tunneling mechanism and high breakdown strength of ∼11.2 MV cm−1are demonstrated for the h-BN monolayers grown on oxygen-incorporated Ni (111) substrates, indicating that these films have high quality. This study provides a unique example that heterogeneous catalysis principles can be applied to the epitaxy of 2D crystals in solid state field. Similar strategies can be used to grow other 2D crystalline materials, and are expected to facilitate the development of next generation devices based on 2D crystals.more » « less
-
Abstract Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr 2 Te 3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr 2 Te 3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr 2 Te 3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr 2 Te 3 thin films offers new opportunities for topological electronics.more » « less
-
We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe 3− δ nanoribbons exfoliated onto gold substrates. At a selenium deficiency of δ ∼ 0.25 (Se/Ta = 2.75), the nanoribbons exhibit a strong, broad PL peak centered around ∼920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785 nm (1.58 eV) laser excitation, allowing for their nanoscale spectroscopic imaging. Nanoribbons with a smaller selenium deficiency (Se/Ta = 2.85, δ ∼ 0.15) did not show any PL or TERS response. The confocal Raman spectra of these samples agree with the previously-reported spectra of metallic TaSe 3 . The differences in the optical response of the nanoribbons examined in this study suggest that even small variations in Se content can induce changes in electronic band structure, causing samples to exhibit either metallic or semiconducting character. The temperature-dependent electrical measurements of devices fabricated with both types of materials corroborate these observations. The density-functional-theory calculations revealed that substitution of an oxygen atom in a Se vacancy can result in band gap opening and thus enable the transition from a metal to a semiconductor. However, the predicted band gap is substantially smaller than that derived from the PL data. These results indicate that the properties of van der Waals materials can vary significantly depending on stoichiometry, defect types and concentration, and possibly environmental and substrate effects. In view of this finding, local probing of nanoribbon properties with TERS becomes essential to understanding such low-dimensional systems.more » « less
-
We report the polarization-dependent Raman spectra of exfoliated MoI3, a van der Waals material with a “true one-dimensional” crystal structure that can be exfoliated to individual atomic chains. The temperature evolution of several Raman features reveals an anomalous behavior suggesting a phase transition of magnetic origin. Theoretical considerations indicate that MoI3 is an easy-plane antiferromagnet with alternating spins along the dimerized chains and with inter-chain helical spin ordering. The calculated frequencies of phonons and magnons are consistent with the interpretation of the experimental Raman data. The obtained results shed light on the specifics of the phononic and magnonic states in MoI3 and provide a strong motivation for further study of this unique material with potential for future spintronic applications.more » « less
An official website of the United States government
